Part Number Hot Search : 
L7554 SI9104 350CA BU536 THC63LVD TC9317F EMK32 TE560
Product Description
Full Text Search
 

To Download V23990-P589-X4X-D2-14 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-p589-*4*-pm flow1 1200v/25a 3~rectifier, optional brc, inverter, ntc very compact housing, easy to route igbt4 / emcon4 technology for low saturation losses and improved emc behaviour industrial drives embedded drives v23990-p589-a41-pm v23990-p589-a41y-pm v23990-p589-a418-pm v23990-p589-c41-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 33 t c =80c 47 t h =80c 37 t c =80c 60 maximum junction temperature t j max 150 c inverter transistor t h =80c 27 t c =80c 34 t h =80c 73 t c =80c 111 t sc t j 150c 10 s v cc v ge =15v 800 v t j =t j max vce 1200v, tj top max types 175 a v ge t j max i cpulse v ce i c w v c a 1200 a v t p limited by t j max t j =t j max turn off safe operating area collector-emitter break down voltage dc collector current pulsed collector current power dissipation per igbt maximum junction temperature short circuit ratings p tot 250 t j =t j max t p =10ms half sine wave a features flow1 housing target applications schematic dc forward current surge forward current t j =150c 310 t j =t j max i2t-value maximum ratings i fav a 2 s i fsm condition input rectifier diode a w power dissipation per diode i 2 t p tot gate-emitter peak voltage 75 20 50
v23990-p589-*4*-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition inverter diode t h =80c 25 t c =80c 32 t h =80c 52 t c =80c 79 brake transistor t h =80c 18 t c =80c 22 t h =80c 53 t c =80c 80 t sc t j 150c 10 s v cc v ge =15v 800 v brake diode t h =80c 14 t c =80c 19 t h =80c 29 t c =80c 44 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 t j =t j max w 1200 t j max 1200 1200 p tot w 175 c turn off safe operating area dc collector current power dissipation per igbt pulsed collector current vce 1200v, tj top max gate-emitter peak voltage p tot collector-emitter break down voltage maximum junction temperature t j max v c 20 short circuit ratings a 50 a 45 a v repetitive peak forward current power dissipation per diode maximum junction temperature peak repetitive reverse voltage v ge t p limited by t j max t j =t j max power dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm v v rrm v ce i cpuls i c a i f v rrm a i frm t j =t j max v c maximum junction temperature t j max 175 t j =t j max t p limited by t j max dc forward current peak repetitive reverse voltage w a a t p limited by t j max -40+(tjmax - 25) c storage temperature t stg -40+125 c comparative tracking index insulation voltage creepage distance t op operation temperature under switching condition clearance 20 50 175 copyright vincotech 2 revision: 2
v23990-p589-*4*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,16 1,6 tj=125c 1,13 tj=25c 0,90 tj=125c 0,78 tj=25c 8,00 tj=125c 11,00 tj=25c tj=150c 2 thermal resistance chip to heatsink per chip r thjh 1,89 tj=25c 5,2 5,8 6,4 tj=125c tj=25c 1,9 1,94 2,4 tj=125c 2,40 tj=25c 0,0024 tj=125c tj=25c 120 tj=125c tj=25c 126 tj=125c 126 tj=25c 21 tj=125c 28 tj=25c 220 tj=125c 284 tj=25c 74 tj=125c 100 tj=25c 1,64 tj=125c 2,53 tj=25c 1,38 tj=125c 2,17 thermal resistance chip to heatsink per chip r thjh 1,30 tj=25c 1,3 1,97 2,2 tj=125c 1,94 tj=25c 32 tj=125c 34 tj=25c 265 tj=125c 436 tj=25c 2,50 tj=125c 4,81 di(rec)max tj=25c 1722 /dt tj=125c 580 tj=25c 0,98 tj=125c 1,94 thermal resistance chip to heatsink per chip r thjh 1,83 thermal grease thickness 50um = 1 w/mk - t j=25c 200 1430 v 25 15 0 t r t d(off) v ce =v ge thermal grease thickness 50um = 1 w/mk q gate erec c oss c rss q rr t rr i ges t f e on e off t d(on) i rrm v f v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse integrated gate resistor inverter transistor gate emitter threshold voltage value c onditions characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t input rectifier diode 30 3 0 30 k/w v v m ma r everse current i r c mws a/s k/w f=1mhz rgon=32 0 2 0 15 rgoff=32 15 25 15 turn-on energy loss per pulse reverse recovered charge inverter diode peak reverse recovery current r everse transfer capacitance diode forward voltage gate charge c ies reverse recovery time reverse recovered energy peak rate of fall of recovery current collector-emitter cut-off current incl. diode fall time turn-off delay time turn-on delay time rise time gate-emitter leakage current collector-emitter saturation voltage 1200 25 0 25 25 0,00085 600 600 1500 thermal grease thickness 50um = 1 w/mk r gon=32 85 v n s a nc na k/w v 115 mws ns pf ma tj=25c copyright vincotech 3 revision: 2
v23990-p589-*4*-pm parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max value c onditions characteristic values tj=25c 5 5,8 6,5 tj=125c tj=25c 1,6 1,88 2,2 tj=125c 2,30 tj=25c 0,005 tj=125c tj=25c 200 tj=125c - tj=25c 87 tj=125c 88 tj=25c 24 tj=125c 29 tj=25c 194 tj=125c 258 tj=25c 77 tj=125c 111 tj=25c 0,950 tj=125c 1,381 tj=25c 0,824 tj=125c 1,273 thermal resistance chip to heatsink per chip r thjh 1,80 tj=25c 1,3 1,85 2,2 tj=125c 1,76 tj=25c 5 tj=125c tj=25c 10 tj=125c 12 tj=25c 324 tj=125c 538 tj=25c 1,38 tj=125c 1,38 di(rec)max tj=25c 46 /dt tj=125c 44 tj=25c 0,581 tj=125c 1,081 thermal resistance chip to heatsink per chip r thjh 3,28 b tj=25c vincotech ntc reference b-value tol. 3% 3950 k b (25/100) tj=25c 3996 k tj=25c b-value b (25/50) tol. 3% v v a n s a/s a mws c v k/w % 22000 5 - 5 55 tj=25c 2 200 tj=25c 120 collector-emitter cut-off incl diode gate emitter threshold voltage 15 0,00085 gate-emitter leakage current i ces v ge(th) v ce(sat) collector-emitter saturation voltage gate charge input capacitance q gate reverse transfer capacitance e off turn-on energy loss per pulse r gint turn-off energy loss per pulse rise time turn-on delay time t f fall time t d(on) t r turn-off delay time t d(off) peak rate of fall of recovery current peak reverse recovery current reverse recovered charge c oss e on output capacitance c rss c ies integrated gate resistor k/w nc brake transistor mw/k p ower dissipation p mw rated resistance r power dissipation constant deviation of r25 ? r/r i ges 0 15 15 rgon=32 rgoff=32 v ce =v ge f=1mhz 15 0 0 20 15 m a na ns pf mws v f i r i rrm diode forward voltage reverse leakage current rgon=32 15 brake diode reverse recovery energy t rr q rr e rec reverse recovery time thermistor thermal grease t hickness 50um = 1 w/mk t hermal grease thickness 50um = 1 w/mk 1 5 600 15 10 1200 1200 600 25 tj=25c tj=25c tj=25c tj=25c 80 900 copyright vincotech 4 revision: 2
v23990-p589-*4*-pm figure 1 output inverter igbt figure 2 output inverter igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 o utput inverter igbt figure 4 output inverter fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v output inverter typical output characteristics 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 0,0 0,5 1,0 1,5 2,0 2,5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 10 20 30 40 50 60 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 5 revision: 2
v23990-p589-*4*-pm figure 5 output inverter igbt figure 6 output inverter igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 32 figure 7 o utput inverter fwd figure 8 output inverter fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a output inverter e on high t e off high t e on low t e off low t 0 1 2 3 4 5 6 0 10 20 30 40 50 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 5 6 7 0 20 40 60 80 100 120 140 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 3 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,5 1 1,5 2 2,5 3 0 20 40 60 80 100 120 140 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 6 r evision: 2
v23990-p589-*4*-pm figure 9 output inverter igbt figure 10 output inverter igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 150 c t j = 150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 25 a r goff = 32 figure 11 o utput inverter fwd figure 12 output inverter fwd typical reverse recovery time as a t ypical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v output inverter t doff t f t don t r 0,00 0,01 0,10 1,00 0 10 20 30 40 50 i c (a) t ( m s) t rr t j = t jmax -25c t rr t j = 25c 0,0 0,2 0,4 0,6 0,8 1,0 1,2 0 35 70 105 140 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0 10 20 30 40 50 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 7 r evision: 2
v23990-p589-*4*-pm figure 13 output inverter fwd figure 14 output inverter fwd typical reverse recovery charge as a t ypical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v figure 15 o utput inverter fwd figure 16 output inverter fwd typical reverse recovery current as a t ypical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v output inverter t j = t jmax - 25c i rrm t j = 25c i rrm 0 11 22 33 44 55 66 77 88 0 35 70 105 140 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 6 0 35 70 105 140 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 9 18 27 36 45 0 10 20 30 40 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 2 4 6 8 0 10 20 30 40 50 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 8 r evision: 2
v23990-p589-*4*-pm figure 17 output inverter fwd figure 18 output inverter fwd typical rate of fall of forward t ypical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/150 c t j = 25/150 c v ce = 600 v v r = 600 v v ge = 15 v i f = 25 a r gon = 32 v ge = 15 v figure 19 o utput inverter igbt figure 20 output inverter fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 1,30 k/w rthjh = 1,11 k/w r thjh = 1,83 k/w rthjh = 1,55 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) r (c/w) tau (s) 0,07 3,4e+00 0,06 3,4e+00 0,04 9,4e+00 0,04 9,4e+00 0,32 4,1e-01 0,27 4,1e-01 0,25 7,1e-01 0,21 7,1e-01 0,59 1,0e-01 0,50 1,0e-01 0,83 1,3e-01 0,71 1,3e-01 0,24 1,3e-02 0,20 1,3e-02 0,44 1,9e-02 0,37 1,9e-02 0,08 8,3e-04 0,07 8,3e-04 0,16 2,5e-03 0,14 2,5e-03 0,10 3,1e-04 0,09 3,1e-04 thermal grease phase change interface thermal grease phase change interface output inverter t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt 0 1000 2000 3000 4000 5000 6000 0 35 70 105 140 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt 0 400 800 1200 1600 2000 2400 0 10 20 30 40 50 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 /dt 25 / 150 25 / 150 copyright vincotech 9 r evision: 2
v23990-p589-*4*-pm figure 21 output inverter igbt figure 22 output inverter igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 o utput inverter fwd figure 24 output inverter fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 c t j = 175 c output inverter 0 35 70 105 140 0 35 70 105 140 175 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) p tot (w) 0 8 16 24 32 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 10 revision: 2
v23990-p589-*4*-pm figure 25 output inverter igbt figure 26 output inverter igbt safe operating area as a function g ate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at at d = single pulse i c = 25 a t h = 80 oc v ge = 15 v t j = t jmax oc figure 27 o utput inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gate-emitter voltage gate-emitter voltage t sc = f(v ge ) i c = f(v ge ) at at v ce = 1200 v v ce 1200 v t j 175 oc t j = 175 oc output inverter v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 18 20 0 25 50 75 100 125 q g (nc) v ge (v) 240v 960v 0 2,5 5 7,5 10 12,5 15 17,5 12 13 14 15 16 17 v ge (v) t sc (s) 0 50 100 150 200 250 12 14 16 18 20 v ge (v) i c (sc) copyright vincotech 11 revision: 2
v23990-p589-*4*-pm figure 29 igbt reverse bias safe operating area i c = f(v ce ) at t j = t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching 0 10 20 30 40 50 60 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 revision: 2
v23990-p589-*4*-pm figure 1 brake igbt figure 2 brake igbt typical output characteristics t ypical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 b rake igbt figure 4 brake fwd typical transfer characteristics t ypical diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v brake 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 v ce (v) i c (a) 0 4 8 12 16 0 2 4 6 8 10 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 5 10 15 20 25 30 35 40 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 13 revision: 2
v23990-p589-*4*-pm figure 5 brake igbt figure 6 brake igbt typical switching energy losses t ypical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 15 a r goff = 32 figure 7 b rake fwd figure 8 brake fwd typical reverse recovery energy loss t ypical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 15 a brake t j = t jmax - 25c e rec t j = 25c e rec 0 0,2 0,4 0,6 0,8 1 1,2 1,4 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,2 0,4 0,6 0,8 1 1,2 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) t j = t jmax -25c e off t j = 25c e on e off 0,0 0,5 1,0 1,5 2,0 2,5 3,0 0 5 10 15 20 25 30 i c (a) e (mws) t j = t jmax -25c e off e on e on t j = 25c e off 0 0,5 1 1,5 2 2,5 3 0 20 40 60 80 100 120 140 r g ( w ww w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 1 4 revision: 2
v23990-p589-*4*-pm figure 9 brake igbt figure 10 brake igbt typical switching times as a t ypical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 25/150 c t j = 25/150 c v ce = 600 v v ce = 600 v v ge = 15 v v ge = 15 v r gon = 32 i c = 15 a r goff = 32 figure 11 b rake igbt figure 12 brake fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at d = tp / t at d = tp / t r thjh = 1,80 k/w r thjh = 1,53 k/w r thjh = 3,28 k/w r thjh = 2,78 k/w thermal grease phase change interface thermal grease phase change interface brake t doff t f t don t r 0,00 0,01 0,10 1,00 0 5 10 15 20 25 30 i c (a) t ( m s) t doff t f t don t r 0,00 0,01 0,10 1,00 0 20 40 60 80 100 120 140 r g ( w ww w ) t ( m s) t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 25 / 150 25 / 150 copyright vincotech 1 5 revision: 2
v23990-p589-*4*-pm figure 13 brake igbt figure 14 brake igbt power dissipation as a c ollector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 15 b rake fwd figure 16 brake fwd power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 175 oc t j = 175 oc brake 0 25 50 75 100 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t h ( o c) i c (a) 0 11 22 33 44 55 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 th ( o c) i f (a) copyright vincotech 16 revision: 2
v23990-p589-*4*-pm figure 1 rectifier diode figure 2 rectifier diode typical diode forward current as d iode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = t p / t r thjh = 1,89 k/w figure 3 r ectifier diode figure 4 rectifier diode power dissipation as a f orward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 150 oc t j = 150 oc input rectifier bridge 0 20 40 60 80 100 0 0,25 0,5 0,75 1 1,25 1,5 1,75 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 15 30 45 60 75 90 0 25 50 75 100 125 150 t h ( o c) p tot (w) 0 10 20 30 40 50 60 0 25 50 75 100 125 150 t h ( o c) i f (a) copyright vincotech 17 revision: 2
v23990-p589-*4*-pm figure 1 thermistor figure 2 thermistor typical ntc characteristic t ypical ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 1 00/25 11 2 5 )( tt b ertr copyright vincotech 18 revision: 2
v23990-p589-*4*-pm t j 150 c r gon 32  r goff 32  figure 1 o utput inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0,28 s t don = 0,13 s t eoff = 0,66 s t eon = 0,43 s figure 3 o utput inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 600 v v c (100%) = 600 v i c (100%) = 25 a i c (100%) = 25 a t f = 0,10 s t r = 0,03 s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 100 150 200 250 2,9 3 3,1 3,2 3,3 3,4 3,5 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 40 60 80 100 120 140 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % v ce i c t f i c10% i c90% 0 50 100 150 200 250 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % t r v ce i c copyright vincotech 19 revision: 2
v23990-p589-*4*-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 15,01 kw p on (100%) = 15,01 kw e off (100%) = 2,17 mj e on (100%) = 2,53 mj t eoff = 0,66 s t eon = 0,43 s figure 7 o utput inverter igbt turn-off switching waveforms & definition of t rr v d (100%) = 600 v i d (100%) = 25 a i rrm (100%) = 10 a t rr = 0,10 s switching definitions output inverter i c 1% v ge 90% -20 0 20 40 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce 3% v ge 10% -40 0 40 80 120 160 200 3 3,1 3,2 3,3 3,4 3,5 3,6 time(us) % p on e on t eon -15 -10 -5 0 5 10 15 20 0 156 312 468 624 780 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -160 -120 -80 -40 0 40 80 120 3 3,2 3,4 3,6 3,8 4 time(us) % i d v d fitted copyright vincotech 20 revision: 2
v23990-p589-*4*-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 25 a p rec (100%) = 15,01 kw q rr (100%) = 4,81 c e rec (100%) = 1,94 mj t qrr = 1,00 s t erec = 1,00 s switching definitions output inverter t qrr -150 -100 -50 0 50 100 150 3 3,5 4 4,5 % i d q rr time(us) 0 25 50 75 100 125 3 3,5 4 4,5 time(us) % p rec e rec t erec copyright vincotech 21 revision: 2
v23990-p589-*4*-pm in datamatrix as in packaging barcode as p589-a41-pm p589-a41-pm p589-a41y-pm p589-a41y-pm p589-a418-pm p589-a418-pm p589-c41-pm p589-c41-pm a version c version 3-leg 3-leg pin x y 1 52,55 0 2 47,7 0 3 44,8 0 4 37,8 0 5 37,8 2,8 6 35 0 7 35 2,8 8 28 0 9 25,2 0 10 22,4 0 11 19,6 0 12 16,8 0 13 14 0 14 11,2 0 15 8,4 0 16 5,6 0 17 2,8 0 18 0 0 19 0 28,5 20 2,8 28,5 pin x y pin x y 21 7,5 28,5 25 29 28,5 29 52,55 25 22 14,5 28,5 26 31,8 28,5 30 52,55 16,9 23 17,3 28,5 27 36,5 28,5 31 52,55 8,6 24 22 28,5 28 43,5 28,5 32 52,55 2,8 pinout ordering code & marking ordering code and marking - outline - pinout features version 17mm housing with solder pins and breake 17mm housing with pressfit pins and breake 12mm housing with solder pins and breake 17mm housing with solder pins w/o breake pin table inverter fwd outline w/o pin 1 ,31,32 v23990-p589-a41y-pm v23990-p589-a418-pm v23990-p589-c41-pm inverter igbt ordering code pin table rectifier break igbt break fwd pin table v23990-p589-a41-pm
v23990-p589-*4*-pm disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright vincotech 23 revision: 2


▲Up To Search▲   

 
Price & Availability of V23990-P589-X4X-D2-14

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X